Step of Proof: nth_tl_is_fseg
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
nth
tl
is
fseg
:
1.
T
: Type
2.
L1
:
T
List
3.
L2
:
T
List
4.
n
: {0..(||
L2
||+1)
}
5.
L1
= nth_tl(
n
;
L2
)
L2
= (firstn(
n
;
L2
) @
L1
)
latex
by ((((((Symmetry)
CollapseTHEN (HypSubst (-1) 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (((
C
BackThruLemma `append_firstn_lastn`)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
))
latex
C
.
Definitions
firstn(
n
;
as
)
,
as
@
bs
,
{
i
..
j
}
,
{
i
...
j
}
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
P
Q
,
Void
,
n
+
m
,
i
j
<
k
,
P
&
Q
,
x
:
A
B
(
x
)
,
||
as
||
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
nth_tl(
n
;
as
)
,
a
<
b
,
A
B
,
,
type
List
,
Type
,
s
=
t
,
#$n
,
t
T
Lemmas
append
wf
,
append
firstn
lastn
,
length
wf1
,
le
wf
origin